(ψ,φ)-weak contraction on ordered uniform spaces
نویسندگان
چکیده
منابع مشابه
Extensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces
The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.
متن کاملg-Weak Contraction in Ordered Cone Rectangular Metric Spaces
We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.
متن کاملUniform Spaces and Weak Slice Spaces
We characterize uniform spaces in terms of a slice condition. We also establish the Gehring-Osgood-Väisälä theorem for uniform spaces in the metric space context.
متن کاملOn the Weak Uniform Rotundity of Banach Spaces
1. Definitions and preliminaries. In this note, X and Y denote Banach spaces and X∗ and Y∗ denote the conjugate spaces of X and Y , respectively. Let A⊂X be a closed subset and X/A denote the quotient space. We use S(X) for the unit sphere in X and Plp (Xi) for the lp product space. We refer to [1, 3] for the following definitions and notations. For more recent treatment, one may see, for examp...
متن کاملOrdered S-Metric Spaces and Coupled Common Fixed Point Theorems of Integral Type Contraction
In the present paper, we introduces the notion of integral type contractive mapping with respect to ordered S-metric space and prove some coupled common fixed point results of integral type contractive mapping in ordered S-metric space. Moreover, we give an example to support our main result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2014
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1406265t